9.1.1: How Solutions Form (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    409047
    • 9.1.1: How Solutions Form (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Explain the significance of the statement "like dissolves like."
    • Explain why certain substances dissolve in other substances.

    A simple way to predict which compounds will dissolve in other compounds is the phrase "like dissolves like". What this means is that polar compounds dissolve polar compounds, nonpolar compounds dissolve nonpolar compounds, but polar and nonpolar do not dissolve in each other.

    Even some nonpolar substances dissolve in water but only to a limited degree. Have you ever wondered why fish are able to breathe? Oxygen gas, a nonpolar molecule, does dissolve in water—it is this oxygen that the fish take in through their gills. The reason we can enjoy carbonated sodas is also due to a nonpolar compound that dissolves in water. Pepsi-cola and all the other sodas have carbon dioxide gas, \(\ce{CO_2}\), a nonpolar compound, dissolved in a sugar-water solution. In this case, to keep as much gas in solution as possible, the sodas are kept under pressure.

    This general trend of "like dissolves like" is summarized in the following table:

    Table \(\PageIndex{2}\): Summary of Solubilities

    Solute

    (Polarity of Compound)

    Solvent

    (Polarity of Compound)

    Dominant Intermolecular Force Is Solution Formed?
    Polar Polar Dipole-Dipole Force and/or Hydrogen Bond yes
    Non-polar Non-polar Dispersion Force yes
    Polar Non-polar no
    Non-polar Polar no
    Ionic Polar Ion-Dipole yes
    Ionic Non-polar no

    Note that every time charged particles (ionic compounds or polar substances) are mixed, a solution is formed. When particles with no charges (nonpolar compounds) are mixed, they will form a solution. However, if substances with charges are mixed with other substances without charges, a solution does not form. When an ionic compound is considered "insoluble", it doesn't necessarily mean the compound is completely untouched by water. All ionic compounds dissolve to some extent. An insoluble compound just doesn't dissolve in any noticeable or appreciable amount.

    What is it that makes a solute soluble in some solvents but not others?

    The answer is intermolecular interactions. The intermolecular interactions include London dispersion forces, dipole-dipole interactions, and hydrogen bonding (as described in Chapter 10). From experimental studies, it has been determined that if molecules of a solute experience the same intermolecular forces that the solvent does, the solute will likely dissolve in that solvent. So, NaCl—a very polar substance because it is composed of ions—dissolves in water, which is very polar, but not in oil, which is generally nonpolar. Nonpolar wax dissolves in nonpolar hexane, but not in polar water.

    9.1.1: How Solutions Form (2)
    Example \(\PageIndex{2}\): Polar and Nonpolar Solvents

    Would I2 be more soluble in CCl4 or H2O? Explain your answer.

    Solution

    I2 is nonpolar. Of the two solvents, CCl4 is nonpolar and H2O is polar, so I2 would be expected to be more soluble in CCl4.

    Exercise \(\PageIndex{2}\)

    Would C3H7OH be more soluble in CCl4 or H2O? Explain your answer.

    Answer

    H2O, because both experience hydrogen bonding.

    Example \(\PageIndex{3}\)

    Water is considered a polar solvent. Which substances should dissolve in water?

    1. methanol (CH3OH)
    2. sodium sulfate (Na2SO4)
    3. octane (C8H18)

    Solution

    Because water is polar, substances that are polar or ionic will dissolve in it.

    1. Because of the OH group in methanol, we expect its molecules to be polar. Thus, we expect it to be soluble in water. As both water and methanol are liquids, the word miscible can be used in place of soluble.
    2. Sodium sulfate is an ionic compound, so we expect it to be soluble in water.
    3. Like other hydrocarbons, octane is nonpolar, so we expect that it would not be soluble in water.
    Exercise \(\PageIndex{3}\)

    Toluene (C6H5CH3) is widely used in industry as a nonpolar solvent. Which substances should dissolve in toluene?

    1. water (H2O)
    2. sodium sulfate (Na2SO4)
    3. octane (C8H18)
    Answer

    Octane (C8H18) will dissolve. It is also non-polar.

    Summary

    • “Like dissolves like” is a useful rule for deciding if a solute will be soluble in a solvent.

    Contributions & Attributions

    This page was constructed from content via the following contributor(s)and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

    9.1.1: How Solutions Form (2024)
    Top Articles
    Use AutoSum to sum numbers
    3 Ways to Use the Sum Function in Microsoft Excel - wikiHow
    Genesis Parsippany
    How To Do A Springboard Attack In Wwe 2K22
    Free Atm For Emerald Card Near Me
    Gunshots, panic and then fury - BBC correspondent's account of Trump shooting
    Ncaaf Reference
    Strange World Showtimes Near Cmx Downtown At The Gardens 16
    Danielle Longet
    Craigslist Dog Kennels For Sale
    Newgate Honda
    Erskine Plus Portal
    Moparts Com Forum
    Craigslist Edmond Oklahoma
    Tamilrockers Movies 2023 Download
    Morristown Daily Record Obituary
    Hermitcraft Texture Pack
    Decosmo Industrial Auctions
    Ups Print Store Near Me
    Timeforce Choctaw
    Dr Ayad Alsaadi
    Evil Dead Rise Showtimes Near Regal Sawgrass & Imax
    Rimworld Prison Break
    1973 Coupe Comparo: HQ GTS 350 + XA Falcon GT + VH Charger E55 + Leyland Force 7V
    Happy Homebodies Breakup
    Reviews over Supersaver - Opiness - Spreekt uit ervaring
    Disputes over ESPN, Disney and DirecTV go to the heart of TV's existential problems
    پنل کاربری سایت همسریابی هلو
    Apparent assassination attempt | Suspect never had Trump in sight, did not get off shot: Officials
    1145 Barnett Drive
    Yayo - RimWorld Wiki
    Skepticalpickle Leak
    Uno Fall 2023 Calendar
    Desales Field Hockey Schedule
    Devargasfuneral
    O'reilly's Wrens Georgia
    EST to IST Converter - Time Zone Tool
    All Things Algebra Unit 3 Homework 2 Answer Key
    Kelly Ripa Necklace 2022
    Boone County Sheriff 700 Report
    Cygenoth
    Craigslist Com Panama City Fl
    Cnp Tx Venmo
    Nail Salon Open On Monday Near Me
    Frigidaire Fdsh450Laf Installation Manual
    Used Auto Parts in Houston 77013 | LKQ Pick Your Part
    Tyrone Dave Chappelle Show Gif
    Grandma's Portuguese Sweet Bread Recipe Made from Scratch
    Tenichtop
    Loss Payee And Lienholder Addresses And Contact Information Updated Daily Free List Bank Of America
    Elizabethtown Mesothelioma Legal Question
    Latest Posts
    Article information

    Author: Van Hayes

    Last Updated:

    Views: 6022

    Rating: 4.6 / 5 (46 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Van Hayes

    Birthday: 1994-06-07

    Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

    Phone: +512425013758

    Job: National Farming Director

    Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

    Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.